Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Nutr Food Res ; : e2200804, 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2318245

ABSTRACT

SCOPE: The purpose of this study was to look into the antiviral activity of a plant extract derived from the roots of the Saussurea lappa as a food supplement against SARS-CoV-2 infection. METHODS AND RESULTS: Vero E6 cells are employed in the study to test the neutralizing effect of Saussurea lappa extract against the SARS-CoV-2 virus. For anti-viral activity detection, a sensitive real-time cell analyzer (xCELLigence RTCA) with a high repetition rate is used. A challenge experiment in mice is planned as a result of the in vitro analysis. A challenge test against SARS-CoV-2 is performed with 10 adult female K18-hACE2 transgenic mice in each group for this purpose. The mice in the S. lappa Group are gavaged 2 days before the virus is administered intranasally (i.n.). The control group received PBS instead of the extract. SARS-CoV-2 virus is administered i.n. under anesthesia for the first 3 days of the experiment, and S. lappa extract was administered by gavage in the afternoon. On the 10th day, mice in the S. lappa group survived the study, whereas animals in the control group grew ill and/or died. In this study, the extract protects the mice against the SARS-CoV-2 virus in 90% of the cases. CONCLUSIONS: This study demonstrates that the Saussurea plant has antiviral effects against SARS-CoV-2 in vitro and in animal models.

2.
Sci Rep ; 13(1): 5224, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2265300

ABSTRACT

Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Mice, Transgenic , Saccharomyces cerevisiae , Antibodies, Viral , Antibodies, Neutralizing
3.
Drug Deliv ; 29(1): 2846-2854, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2008414

ABSTRACT

Favipiravir, an RNA-dependent RNA polymerase (RdRp) inhibitor, is used to treat patients infected with influenza virus and most recently with SARS-CoV-2. However, poor accumulation of favipiravir in lung tissue following oral administration has required an alternative method of administration that directly targets the lungs. In this study, an inhalation solution of favipiravir at a concentration of 2 mg mL-1 was developed and characterized for the first time. The chemical stability of inhaled favipiravir solution in two different media, phosphate buffer saline (PBS) and normal saline (NS), was investigated under different conditions: 5 ± 3 °C, 25 ± 2 °C/60% RH ± 5% RH, and 40 ± 2 °C/75% RH ± 5% RH; in addition to constant light exposure. As a result, favipiravir solution in PBS revealed superior stability over 12 months at 5 ± 3 °C. Antiviral activity of favipiravir was assessed at the concentrations between 0.25 and 3 mg mL-1 with real time cell analyzer on Vero-E6 that were infected with SARS-CoV-2/B.1.36. The optimum concentration was found to be 2 mg mL-1, where minimum toxicity and sufficient antiviral activity was observed. Furthermore, cell viability assay against Calu-3 lung epithelial cells confirmed the biocompatibility of favipiravir at concentrations up to 50 µM (7.855 mg mL-1). The in vitro aerodynamic profiles of the developed inhaled favipiravir formulation, when delivered with soft-mist inhaler indicated good lung targeting properties. These results suggest that favipiravir solution prepared with PBS could be considered as a suitable and promising inhalation formulation for pulmonary delivery in the treatment of patients with COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Amides , Antiviral Agents/pharmacology , Humans , Lung , Pyrazines , Respiratory Aerosols and Droplets , SARS-CoV-2
4.
North Clin Istanb ; 9(2): 122-130, 2022.
Article in English | MEDLINE | ID: covidwho-1856394

ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19), leading to mild infection (MI), acute respiratory distress syndrome or death in different persons. Although the basis of these variabilities has not been fully elucidated, some possible findings have been encountered. In the present study, we aimed to reveal genes with different expression profiles by next-generation sequencing of RNA isolated from blood taken from infected patients to reveal molecular causes of different response. Methods: Two healthy, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative control individuals (NCI), two SARS-CoV-2-positive patients who have MI, and two patients who have critical infection (CI) were included in the study. Total RNA was extracted from blood samples and sequenced. Raw RNA-Seq data were analyzed on Galaxy platform for the identification of differentially expressed genes and their pathway involvements. Results: We found that 199 and 521 genes were downregulated in whole blood of COVID-19-positive CI patients compared to NCI and MI patients, respectively. We identified 21 gene ontology pathways commonly downregulated in CI patients compared to both NCI and MI, mostly associated with innate and adaptive immune responses. Three hundred and fifty-four and 600 genes were found to be upregulated compared to NCI and MI, respectively. Upregulated six pathways included genes that function in inflammatory response and inflammatory cytokine release. Conclusion: The transcriptional profile of CI patients deviates more significantly from that of MI in terms of the number of differentially expressed genes, implying that genotypic differences may account for the severity of SARS-CoV-2 infection and inflammatory responses through differential regulation of gene expression. Therefore, further studies that involve whole genome analysis coupled with differential expression analysis are required in order to determine the dynamics of genotype - gene expression profile associations.

5.
Front Immunol ; 13: 824378, 2022.
Article in English | MEDLINE | ID: covidwho-1785335

ABSTRACT

The scale of the COVID-19 pandemic forced urgent measures for the development of new therapeutics. One of these strategies is the use of convalescent plasma (CP) as a conventional source for passive immunity. Recently, there has been interest in CP-derived exosomes. In this report, we present a structural, biochemical, and biological characterization of our proprietary product, convalescent human immune plasma-derived exosome (ChipEXO), following the guidelines set forth by the Turkish Ministry of Health and the Turkish Red Crescent, the Good Manufacturing Practice, the International Society for Extracellular Vesicles, and the Gene Ontology Consortium. The data support the safety and efficacy of this product against SARS-CoV-2 infections in preclinical models.


Subject(s)
COVID-19 , Exosomes , Antibodies, Viral , Antiviral Agents/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive , Pandemics , SARS-CoV-2 , COVID-19 Serotherapy
6.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1525991

ABSTRACT

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Subject(s)
Acetates/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cyclopropanes/pharmacology , Quinolines/pharmacology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Sulfides/pharmacology , A549 Cells , Acetates/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cyclopropanes/chemistry , Drug Repositioning , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neutralization Tests , Protein Conformation , Quinolines/chemistry , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Sulfides/chemistry , Vero Cells , Virus Internalization/drug effects
7.
Allergy ; 77(1): 258-270, 2022 01.
Article in English | MEDLINE | ID: covidwho-1406541

ABSTRACT

BACKGROUND: Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the four structural proteins of SARS-CoV-2. METHODS: VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography, and characterized by tunable-resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. RESULTS: Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN-adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1-biased T-cell responses, reduced virus load, and prevented lung pathology upon live virus challenge in vaccinated animals. CONCLUSION: These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.


Subject(s)
COVID-19 , Vaccines, Virus-Like Particle , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , HEK293 Cells , Humans , SARS-CoV-2
8.
Turk J Biol ; 44(3): 203-214, 2020.
Article in English | MEDLINE | ID: covidwho-618653

ABSTRACT

In December 2019 a novel coronavirus was detected in Wuhan City of Hubei Province-China. Owing to a high rate of transmission from human to human, the new virus called SARS-CoV-2 differed from others by its unexpectedly rapid spread. The World Health Organization (WHO) described the most recent coronavirus epidemic as a global pandemic in March 2020. The virus spread triggered a health crisis (the COVID-19 disease) within three months, with socioeconomic implications. No approved targeted-therapies are available for COVID-19, yet. However, it is foreseen that antibody-based treatments may provide an immediate cure for patients. Current neutralizing antibody development studies primarily target the S protein among the structural elements of SARS-CoV-2, which mediates the cell entry of the virus through the angiotensin converting enzyme 2 (ACE2) receptor of host cells. This review aims to provide some of the neutralizing antibody development strategies for SARS-CoV-2 and in vitro and in vivo neutralization assays.

SELECTION OF CITATIONS
SEARCH DETAIL